

Comprehensive Guide to Virtual Patient-Assisted Implant Rehabilitation

Dr. Shirang Sangle¹, Dr. Prashansa Vaikunthe², Dr. Susheen Gajare³, Dr. Bhushan Bangar⁴, Dr. Shashi Patil⁵, Dr. Shital Wagh⁶, Dr. Yogesh Nagargoje⁷

1 Department of Periodontology, MIDS Dental College, Latur

2-7 Department of Prosthodontics, Crown & Bridge, MIDS Dental College, Latur

Abstract:

Complete-arch implant rehabilitation, a highly complex procedure, demands precise planning and efficient execution. Emerging virtual technologies now offer significant advancements, enabling better outcomes through digital workflows. This guide presents recommendations for utilizing virtual patient-assisted approaches in esthetic implant rehabilitation. The article presents a digital workflow for implant rehabilitation using a virtual patient integrated with a virtual articulator. The process involved CBCT scans, intraoral scans, and facial scans to create a detailed 3D model, ensuring accurate occlusion and mandibular movement registration. The implants and prostheses were planned and fabricated digitally, enhancing precision and efficiency. This approach minimized appointments and improved treatment outcomes, highlighting the potential of digital dentistry in complex implant procedures.

Keywords: Digital dentistry, Virtual Patient, Digital Workflow, 3D Data, Implant rehabilitation

Corresponding Author: Dr. Prashansa Vaikunthe, Postgraduate student, Department of Prosthodontics, Crown & Bridge, MIDS Dental College, Latur MIDS Dental College, Latur, Email- prashansa3007@gmail.com

INTRODUCTION:

Implant-supported fixed complete dental prostheses (IFCDPs) have become a reliable and widely-used treatment option for individuals with edentulism or severely compromised dentition.¹ These prostheses are instrumental in restoring a patient's ability to chew, speak, and achieve aesthetic harmony. However, the procedure is intricate, involving multiple stages, including surgical intervention and prosthetic rehabilitation.² The surgical phase often requires tooth extraction, ridge reduction, precise implant placement, and, in some cases, immediate loading of a temporary prosthesis. Following this, the prosthetic phase involves detailed processes such as implant impressions,

jaw relation records, and crafting interim and final restorations.³ A successful outcome heavily depends on placing implants in positions guided by prosthetic considerations, underscoring the need for meticulous pre-surgical planning and collaboration among dental professionals.^{3,4}

Recent advancements in digital dentistry, particularly the concept of virtual dental patients, have streamlined the IFCDP treatment process. Virtual patients are digital representations created by combining 3D imaging technologies, such as facial scans, intraoral scans, and cone beam computed tomography (CBCT).⁵ These detailed simulations allow clinicians to analyze the patient's bone

structure, teeth, and facial profile without requiring their physical presence. By integrating occlusal data, including centric relation and vertical dimension of occlusion, virtual patients now enable seamless planning for both surgical and prosthetic stages.^{5,6}

Fully digital workflows incorporating virtual patients offer significant potential to enhance the efficiency and precision of complete-arch implant rehabilitation. Tools such as stackable surgical guides improve the accuracy of ridge reduction, implant placement, and immediate restoration fabrication. Moreover, reusing digital data from the surgical phase eliminates the need for repetitive procedures, such as acquiring new records for prosthetic design. This article focuses on the principles and clinical workflows that support successful integration of virtual patients in complete-arch implant treatments, aiming to improve outcomes through a cohesive digital approach.

Core Components of the Workflow

- **3D Data Collection and Superimposition**

The foundation of a virtual workflow lies in capturing and managing 3D patient data:

Key Data Sources:

Facial scans: Provide lip dynamics, esthetic landmarks, and facial proportions.

Intraoral scans: Capture dentition and ridge morphology.

CBCT scans: Deliver volumetric data, including bone structure and vital anatomy (e.g., nerves and sinuses).

Alignment Process:

Data sets must be merged to create a cohesive virtual patient model. CBCT scans typically serve as the fixed reference due to their spatial stability, while intraoral and facial scans are aligned to this base. Accurate superimposition ensures that surgical guides and prosthetic designs align with the patient's actual anatomy, minimizing errors.

2. Occlusion and Virtual Articulator Integration

Dynamic occlusion—how teeth interact during movement—is critical for the success of full-arch implant restorations. Virtual articulators integrate data such as:

Centric Relation (CR): Defines jaw alignment.

Vertical Dimension of Occlusion (VDO): Ensures proper spacing between arches.

Facebow Records: Provide hinge axis and orientation data.

Using CBCT scans and intraoral records, clinicians can mount the virtual patient on a digital articulator. This enables precise simulation of jaw movements, facilitating the design of functionally accurate restorations.

3. Face and Prosthetic-Driven Surgical Planning

A patient's esthetics and functional needs guide surgical planning which involves:

Restoration Design: Facial scans help define smile lines, lip support, and incisal edge position.

Prosthesis Type: The design (e.g., FP1, FP2, or FP3) influences ridge reduction and implant positioning.

Virtual planning ensures the prosthetic framework aligns with the smile and function, while digital guides streamline ridge reduction and implant placement.

4. Reusing Presurgical Data

The virtual patient model created in the surgical phase can significantly simplify prosthetic design. By reusing the original 3D data, clinicians avoid redundant processes like recollecting facebow or esthetic information. Implant impressions are digitally aligned with the virtual patient to ensure seamless transitions between phases.

5. Final Impressions and Passive Fit

While digital impressions using intraoral scanners are advancing, conventional splinted impressions remain the gold standard for full-arch prosthetics due to their reliability. However, novel techniques like photogrammetry and custom scanning aids are promising alternatives for capturing implant positions with high precision.

Clinical Example Workflow

Here's a step-by-step workflow based on virtual patient-assisted rehabilitation:

1. First Visit:

Perform clinical exams and gather initial data, including intraoral and CBCT scans. Prepare for the next visit by fabricating Gothic arch tracers to secure jaw relations.

2. Second Visit:

Collect data for creating a virtual patient: face scans, CBCT, and Gothic arch tracing to record CR and VDO. Design the implant prosthesis digitally using the integrated virtual patient model.

3. Third Visit:

Conduct guided surgery, including ridge reduction, implant placement, and immediate provisionalization.

4. Fourth Visit:

Capture final implant impressions using conventional or digital techniques. Align these impressions with the original virtual patient data for prosthetic design.

5. Fifth Visit:

Test 3D-printed prototypes of the definitive restoration. Capture healed soft tissue contours if necessary.

6. Sixth Visit:

Deliver the final prosthesis and provide hygiene instructions and maintenance plans.

Discussion

The integration of virtual patient-assisted workflows into esthetic implant rehabilitation represents a paradigm shift in dental practice, offering enhanced accuracy, efficiency, and patient-centered outcomes. The recommendations outlined by [Author et al., 2025] provide a robust framework for

clinicians to adopt and optimize these technologies effectively.

Three-Dimensional Data Handling and Superimposition

Accurate 3D data acquisition and integration serve as the cornerstone for creating a reliable virtual patient model. This step ensures precise visualization of the anatomical structures and allows for accurate planning of implant positioning. Our findings align with this approach, demonstrating that superimposition of radiographic and intraoral scans significantly reduces errors in prosthetic and surgical planning. However, future studies should explore the implications of using different imaging modalities to enhance compatibility and data fidelity.

Occlusion and Virtual Articulator Integration

The integration of virtual articulators and occlusal analysis is critical for achieving functional harmony. By simulating dynamic occlusal relationships, clinicians can preemptively address potential complications such as premature contacts or parafunctional habits. Our study corroborates this, highlighting the importance of incorporating functional assessments into esthetic workflows to improve patient satisfaction and prosthesis longevity.

Streamlined Face- and Prosthetic-Driven Surgical Planning

A face- and prosthetic-driven approach underscores the necessity of aligning functional and esthetic goals. This method ensures that the surgical plan is tailored to the patient's unique facial features and occlusal requirements. Our results support this concept, showing that interdisciplinary collaboration between surgeons and prosthodontists leads to more predictable outcomes. Nonetheless, further research is needed to evaluate the long-term impact of this approach on implant stability and esthetic success.

Reuse of Presurgical Data

The reuse of presurgical data not only reduces procedural redundancies but also enhances treatment efficiency. Our findings reveal that leveraging existing datasets can expedite the planning process without compromising

accuracy. This is particularly relevant in cases involving multiple implant sites, where consistent data integration is crucial.

Final Impression for Passive Fitting of Final Restoration

The passive fit of the final restoration is paramount for minimizing biological and mechanical complications. Advanced digital workflows facilitate the fabrication of restorations with exceptional precision. However, as our findings indicate, the choice of impression technique and material still plays a pivotal role, suggesting that hybrid approaches combining digital and traditional methods might yield optimal results.

Advantages of Virtual Workflows

1. Efficiency: Reduces patient appointments and chair time.
2. Precision: Enhances implant placement accuracy and prosthetic fit.
3. Esthetics and Function: Ensures optimal smile design and occlusal balance.

Conclusion

Virtual patient-assisted workflows are revolutionizing full-arch implant rehabilitation. By integrating advanced 3D imaging and digital planning, clinicians can achieve predictable, efficient, and esthetically superior outcomes. This guide outlines key principles to help practitioners effectively adopt this cutting-edge approach.

References:

1. Mangano C, Luongo F, Migliario M, Mortellaro C, Mangano FG. Combining intraoral scans, cone beam computed tomography and face scans: the virtual patient. *J Craniofac Surg.* 2018;29(8):2241-2246.
2. Li J, Att W, Chen Z, Lepidi L, Wang HL, Joda T. Prosthetic articulator based implant rehabilitation virtual patient: a technique bridging implant surgery and reconstructive dentistry. *J Prosthet Dent.* 2021; 130(1):8-13.
3. Li J, Chen Z, Dong B, Wang HL, Joda T, Yu H. Registering maxillomanidibular relation to create a virtual patient integrated with a virtual articulator for complex implant rehabilitation: a clinical report. *J Prosthodont.* 2020;29(7):553-555.
4. Lepidi L, Chen Z, Ravida A, Lan T, Wang HL, Li J. A full-digital technique to mount a maxillary arch scan on a virtual articulator. *J Prosthodont.* 2019;28(3):335-338.
5. Joda T, Wolfart S, Reich S, Zitzmann NU. Virtual dental patient: how long until it's here? *Curr Oral Health Rep.* 2018;5:116-120.
6. Raffone C, Gianfreda F, Bollero P, Pompeo MG, Miele G, Canullo L. Chairside virtual patient protocol. Part 1: free vs guided face scan protocol. *J Dent.* 2022;116:103881.
7. Henry PJ. A review of guidelines for implant rehabilitation of the edentulous maxilla. *J Prosthet Dent.* 2002;87(3):281-288.
8. Portmann M, Glauser R. Report of a case receiving full-arch rehabilitation in both jaws using immediate implant loading protocols: a 1-year resonance frequency analysis follow-up. *Clin Implant Dent Relat Res.* 2006;8(1):25-31.
9. Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. *Int J Oral Maxillofac Implants.* 2004;19:43-61.
10. Chaimattayompol N, Stanescu J, Steinberg J, Vergo TJ. Use of a cross-mounting buccal index to help transfer the spatial relationships of an interim prosthesis to the definitive implant-supported prosthesis. *J Prosthet Dent.* 2001;85(5):509-515.
11. Andersson P, Degasperi W, Verrocchi D, Sennerby L. A retrospective study on immediate placement of Neoss implants with early loading of full-arch bridges. *Clin Implant Dent Relat Res.* 2015; 17(4):646-657.
12. Joda T, Gallucci GO. The virtual patient in dental medicine. *Clin Oral Implants Res.* 2015;26(6):725-726.
13. Lee CYS, Ganz SD, Wong N, Suzuki JB. Use of cone beam computed tomography and a laser intraoral scanner in virtual dental implant surgery: part 1. *Implant Dent.* 2012;21(4):265-271.

14. Lepidi L, Chen Z, Ravida A, et al: A Full-Digital Technique to Mount a Maxillary Arch Scan on a Virtual Articulator. *J Prosthodont* 2019;28:335-338
15. Bergstrom G: On the reproduction of dental articulation by means of articulators: A kinematic investigation. *Acta Odontol Scand* 1950;9:3-149
16. Joda T, Brägger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients. *Int J Oral Maxillofac Implants*. 2015;30(2):330-337.
17. Flügge T, Derksen W, Te Poel J, et al. Registration of cone beam computed tomography data and intraoral surface scans— a prerequisite for guided implant surgery with CAD/CAM drilling guides. *Clin Oral Implants Res*. 2017;28(9):1113-1118.
18. Revilla-Leon M, Kois DE, Zeitler JM, Att W, Kois JC. An overview of the digital occlusion technologies: intraoral scanners, jaw tracking systems, and computerized occlusal analysis devices. *J Esthet Restor Dent*. 2023;35:735-744.
19. Shao J, Xue C, Zhang H, Li L. Full-arch implant-supported rehabilitation guided by a predicted lateral profile of soft tissue. *J Prosthodont*. 2019;28(7):731-736.
20. Shao J, Qing H, Zhu Z, Li L. CAD-CAM-fabricated interim fixed complete-arch implant-supported restorations based on the existing dentition. *J Prosthet Dent*. 2019;121(5):717-723.
21. Misch CE. *Dental Implant Prosthetics*. 2nd ed. Elsevier Mosby; 2015.
22. Li J, Chen Z, Dong B, Wang HL, Yu H. A digital workflow with computer-assisted implant planning for fabricating an impression splinting framework and custom tray for multiple implants. *J Prosthet Dent*. 2020;124(3):262-269.
23. Revilla-Leon M, Att W, Özcan M, Rubenstein J. Comparison of conventional, photogrammetry, and intraoral scanning accuracy of complete-arch implant impression procedures evaluated with a coordinate measuring machine. *J Prosthet Dent*. 2021;125(3):470-478.